Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros

Ano de publicação
Tipo de documento
Intervalo de ano
1.
iScience ; 2023.
Artigo em Inglês | EuropePMC | ID: covidwho-2273557

RESUMO

A better understanding of the durability and breadth of serum neutralizing antibody responses against multiple SARS-CoV-2 variants elicited by Covid-19 vaccines is crucial in addressing the current pandemic. In this study, we quantified the decay of serum neutralization antibodies (nAbs) after second and third doses of the original Covid-19 mRNA vaccine. Using an authentic virus neutralization assay, we found that decay half-lives of WA1- and Delta-nAbs were both ∼60 days post second and third vaccine dose. Unexpectedly, the durability of serum antibodies that neutralize three different Omicron subvariants (BA.1.1, BA.5, BA.2.12.1) was substantially better, with half-lives of ≥ 6 months. A booster dose of the original Covid-19 vaccine was also found to broaden antibody responses against SARS-CoV and four other sarbecoviruses, in addition to multiple SARS-CoV-2 strains. These findings suggest that repeated vaccinations with the Covid-19 vaccine may confer a degree of protection against future spillover of sarbecoviruses from animal reservoirs. Graphical abstract

2.
iScience ; 26(4): 106345, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: covidwho-2273558

RESUMO

A better understanding of the durability and breadth of serum-neutralizing antibody responses against multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants elicited by COVID-19 vaccines is crucial in addressing the current pandemic. In this study, we quantified the decay of serum neutralization antibodies (nAbs) after second and third doses of the original COVID-19 mRNA vaccine. Using an authentic virus-neutralization assay, we found that decay half-lives of WA1- and Delta-nAbs were both ∼60 days after second and third vaccine dose. Unexpectedly, the durability of serum antibodies that neutralize three different Omicron subvariants (BA.1.1, BA.5, BA.2.12.1) was substantially better, with half-lives of ≥6 months. A booster dose of the original COVID-19 vaccine was also found to broaden antibody responses against SARS-CoV and four other sarbecoviruses, in addition to multiple SARS-CoV-2 strains. These findings suggest that repeated vaccinations with the COVID-19 vaccine may confer a degree of protection against future spillover of sarbecoviruses from animal reservoirs.

3.
Cell ; 186(2): 279-286.e8, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: covidwho-2158568

RESUMO

The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies.


Assuntos
Anticorpos Antivirais , COVID-19 , Evasão da Resposta Imune , SARS-CoV-2 , Humanos , Anticorpos Monoclonais , Anticorpos Neutralizantes , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19 , SARS-CoV-2/classificação , SARS-CoV-2/genética
4.
Nature ; 608(7923): 603-608, 2022 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1921637

RESUMO

SARS-CoV-2 Omicron subvariants BA.2.12.1 and BA.4/5 have surged notably to become dominant in the United States and South Africa, respectively1,2. These new subvariants carrying further mutations in their spike proteins raise concerns that they may further evade neutralizing antibodies, thereby further compromising the efficacy of COVID-19 vaccines and therapeutic monoclonals. We now report findings from a systematic antigenic analysis of these surging Omicron subvariants. BA.2.12.1 is only modestly (1.8-fold) more resistant to sera from vaccinated and boosted individuals than BA.2. However, BA.4/5 is substantially (4.2-fold) more resistant and thus more likely to lead to vaccine breakthrough infections. Mutation at spike residue L452 found in both BA.2.12.1 and BA.4/5 facilitates escape from some antibodies directed to the so-called class 2 and 3 regions of the receptor-binding domain3. The F486V mutation found in BA.4/5 facilitates escape from certain class 1 and 2 antibodies but compromises the spike affinity for the viral receptor. The R493Q reversion mutation, however, restores receptor affinity and consequently the fitness of BA.4/5. Among therapeutic antibodies authorized for clinical use, only bebtelovimab retains full potency against both BA.2.12.1 and BA.4/5. The Omicron lineage of SARS-CoV-2 continues to evolve, successively yielding subvariants that are not only more transmissible but also more evasive to antibodies.


Assuntos
Anticorpos Antivirais , Deriva e Deslocamento Antigênicos , COVID-19 , Mutação , SARS-CoV-2 , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Deriva e Deslocamento Antigênicos/genética , Deriva e Deslocamento Antigênicos/imunologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Humanos , Imunização Secundária , Receptores Virais/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA